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Selecting a training image (TI) that is representative of the reservoir of interest is essential for an 
effective application of multiple point statistics.  It is often possible to narrow potential TIs to a 
particular group of images based on the available geological knowledge; however, choosing a 
specific TI is often difficult and is largely subjective.  Significant differences between the spatial 
statistics of local conditioning and a TI may lead to artifacts in MPS.  A methodology is 
presented that compares the distribution of runs and the multiple point histogram from available 
exploration data to the same statistics in TIs.  The difference in the multiple point statistics can be 
used to select the TI that is most representative of the data set.  This procedure is used to select a 
TI for a set of 32 deepwater wells provided by Chevron.  An extension of this technique is to use 
the multiple point comparison to rank realizations.  To demonstrate this, 30 multiple point 
realizations are generated using single normal equations simulation (SNESIM) and compared to 
30 realizations generated using sequential indicator simulations (SIS).  The realizations are then 
ranked based on their similarity to the parent TI and it is found that the multiple point 
realizations are more similar to the original TI.  It is anticipated that ranking realizations would 
be used to select appropriate realizations for further analysis, such as flow simulation, 
uncertainty calculations, or reserve estimation and for checking the reproduction of input 
statistics for model validation. 

Introduction 

There are a number of implementation issues that have not been addressed with MPS.  Focus has 
been placed on how to create an algorithm that reproduces the multiple point statistics borrowed 
from a TI.  This is extremely important, and is at the core of any application of multiple point 
statistics.  However, there are other pressing issues such as the selection of an appropriate TI.  
Just as the effectiveness of sequential Gaussian simulation (SGS) depends on a valid variogram 
model, the effectiveness of multiple point simulation depends on a valid TI.  In this context, a 
valid TI is defined as an exhaustive, gridded set of data. Exhaustive translates to having a 
sufficiently large TI such that all necessary multiple point statistics are inferable.  The necessity 
for the TI to be gridded is founded in the reliance of multiple point algorithms on gridded TIs; 
this is a practical limitation rather than a theoretical one.  In addition to these constraints, a TI 
must be representative of the area of interest, insomuch as it possesses heterogeneities present in 
the geology and that have a significant impact on the transfer function.  Just as the variogram 
contains the two point relationships in a data set, the TI contains the multiple point statistics that 
will be reproduced in the realizations.  Variograms are often inferred from available exploration 
data and similar reservoirs.  Unfortunately, the number of multiple point statistics required to 
satisfy the exhaustive constraint is much larger than any normal exploration data set.  Other 
sources are required to infer the necessary multiple point statistics. 
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A geologically realistic source for an appropriate TI is extensively sampled reservoirs.  Many 
problems hinder the use of exhaustive data for multiple point statistical inference: 

• Lack of flexibility – There is very little opportunity to adjust the data to fit the area of 
interest.  Properties such as anisotropy, geological units, complex geometry or 
proportions of the extensively sampled area must be representative of the area of interest 
and are difficult to alter to fit new areas.  For example, if the production data is available 
for a fluvial reservoir, but the sinuosity of the channels is slightly greater than the 
reservoir of interest, it would be difficult to adjust this and use the data as a TI. 

• Lack of availability – It is rare that one company will develop two areas that are 
sufficiently similar to use data from the older area to infer multiple point statistics; this, 
coupled with companies reluctance to share data in its original form, makes obtaining 
extensively sampled data difficult. 

• Lack of gridded data – Even when production data is available it is seldom on a regular 
grid.  Current multiple point simulation algorithms are limited to using TIs that are 
defined on a regular grid because of the difficulty in defining a multiple point template 
for an unstructured grid.  Production data must be altered to fit a regular grid and this can 
pose problems.  Alternatively, dense production data could be used to generate a very 
detailed and accurate geostatistical model on a regular grid. 

The difficulties in using production data for TIs has resulted in the use of process based modeling 
to generate TIs that have realistic geological features.  This has been done by Pyrcz and Deutsch 
(2003), Pyrcz et atl. (2005) and Pyrcz and Strebelle (2006) for fluvial and deepwater TIs.  
Mimicking geological processes generates TIs that are exhaustive and contain the desired 
geological features.  However, these process based techniques generate many TIs with different 
properties such as different net to gross ratios (NTG), sinuosity, channel size, depositional 
settings, etc.  When presented with a host of potential TIs, the geostatistician  must decide which 
are more appropriate for their reservoir.  Often TI selection is done subjectively based on the 
available geological knowledge.  The methodology presented here attempts to remove the 
subjective aspect of selecting a TI by comparing the multiple point statistics of TIs to the 
exploration data available.  As mentioned previously, there is not sufficient exploration data to 
infer all multiple point statistics but there is often a sufficient number of data to make an accurate 
comparison between potential TIs and the data.  This can be used to rank TIs on their similarity to 
the reservoir of interest, thus helping to select a TI that is representative of the area of interest. 

An extension of this concept is to use the same methodology after simulation to rank multiple 
point realizations based on their similarity to the TI selected.  This would occur after the selection 
of an appropriate TI and after multiple point realizations have been simulated.  Once realizations 
are available, they can be compared to the original TI to determine how well the algorithm 
reproduced the multiple point statistics of the TI. 

Background 

Multiple point statistics are an emerging solution to the limitations inherent in traditional 
geostatistical techniques.  A description of the variogram is given to highlight these limitations.  
Generating a TI is only the initial step in estimating or simulating with multiple point techniques.  
Once a TI has been selected the multiple point statistics from that TI must be reproduced in a set 
of realizations.  These statistics can never be honored exactly, or the resulting simulations would 
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be identical to the TI; however, the multiple point statistics of the realizations should be as close 
as possible to the TI while honoring the available data for the reservoir of interest.  Two types of 
multiple point statistics, the distribution of runs and the multiple point histogram, will be 
described as they will be used to rank TIs and realizations.  

Variogram Use and Limitations 

The variogram is commonly used to define the covariance between two locations in space 
separated by a distance h.  The two locations are defined as u and u + h, by definition the 
variogram (γ) is: 
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This can be used to calculate the covariance between two points.  The covariance between points 
separated by a distance h is: 
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The variance (σ2) is defined as the covariance at a distance h=0: 
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Combining equations 1,2 and 3 yields: 
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In this way the covariance between points separated by a distance can be calculated from the 
variogram.  γ(u+h) for multiple lag distances, h, are often calculated from the available 
exploration data and then modeled with a positive definite function.  The variogram model is 
most commonly used to estimate a variable in a domain using Kriging or to generate a series of 
realizations using sequential Gaussian simulation.  Kriging is a linear estimator that assigns 
weights λi, to the ith data point Z(ui),  to estimate at a given location u: 
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The weights generated by Kriging minimizes the error variance: the expected squared difference 
between the estimate at a location, Z*(u), and the true value at that location, Z(u).  This estimate 
has less variance than the original variable.  This smoothness is well known and is addressed 
using sequential Gaussian simulation (SGS) to add a random component to the Kriged estimate 
that corrects for the smoothing effect of Kriging.  Kriging, SGS and the smoothing effect are well 
documented in literature, for example see Journel and Huijbregts (1978). 

Variogram based techniques often assume the variable of interest follows a multi Gaussian 
distribution.  Often realistic results can be generated under a multi Gaussian framework using 
transformations, however, any parametric approach will be limited in that it cannot reproduce 
complex features unless they can be defined by the parameters, which is seldom the case.  The 
limitations inherent in a multi Gaussian assumption where the variogram is used to define the two 
point relationship is that the curvilinear features and ordering relationships that are often present 
in geological formations cannot be reproduced.  For many applications, excluding the curvilinear 
features is critical.  For example, removal of nonlinear features may drastically change 
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connectivity of net facies.  The need to reproduce these nonlinear features in geostatistical 
realizations motivates the use of multiple point statistics. 

Multiple Point Statistics 

Multiple point statistics are any type of statistic that considers the relationship between more than 
one data point.  For this paper, multiple point statistics are considered to be statistics that consider 
the relationship between more than two points (i.e. statistics beyond the variogram).  Multiple 
point statistics are often compared to two point statistics and the difference will be made clear.   

There are many different multiple point statistics, such as the connectivity function, the multiple 
point histogram and the distribution of runs.  The multiple point histogram and the distribution of 
runs will be used to select appropriate TIs and rank realizations. 

The Distribution of Runs 

Runs are a type of multiple point statistic that can be applied to a 1-D string of values, such as a 
well.  The concept is to count the number of consecutive occurrences of a particular category.  
This is illustrated in Figure 1. 

The distribution of runs for this example would be 3 runs of length one, 2 runs of length two, and 
1 run of length three.  The cumulative distribution of runs can be found by noting that each higher 
order run contains all lower order runs.  For example, the run of three gray blocks contains two 
runs of length two and three runs of length one; therefore, the cumulative distribution would be 
10 runs of length one, 4 runs of length two and 1 run of length three.  Figure 2 shows this 
distribution of runs. 

It is not necessary that the spacing of the string of numbers be equidistant and parallel, but this 
simplifies the analysis.  Runs will be calculated on wells and it is realistic to consider straight 
wells with equally spaced samples. 

The Multiple Point Histogram 

The traditional histogram counts the frequency of times a particular continuous variable falls in a 
bin, or counts the frequency of times that a particular indicator variable occurs.  The multiple 
point histogram counts the frequency of times a multiple point configuration occurs.  Consider a 4 
point configuration that could take two different values, there are a total of 16 (24) unique 
configurations. 

Considering this four point configuration, or template, the multiple histogram for a gridded image 
can be calculated.  The number of times that each configuration in Figure 3 occurs in the image is 
counted and the bins of the histogram correspond to the different configurations.  Consider the 
image in Figure 4 with its multiple point histogram shown in Figure 5. 

Note that the ordering of the bins in Figure 5 is entirely arbitrary, so long as the bins are ordered 
consistently there is little confusion.  Considering a larger template or more categories 
significantly increases the number of bins in the multiple point histogram, making visualizing the 
multiple point histogram for large templates challenging.  There is no limitation on the shape or 
size of the histogram other than the computational effort required to deal with the large number of 
bins: other possible configurations are shown in Figure 6. 

Using Multiple Point Statistics 

The multiple point histogram is commonly used in multiple point simulation algorithms.  
Traditionally, the variogram has been modeled based on exploration data; this is not possible 
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when using the multiple point histogram because of the volume of data necessary to accurately 
infer all bins of the multiple point histogram.  An alternative source for the inference of multiple 
point statistics is needed.  Selecting a TI to be representative of the area of interest has become 
the most common method of inferring the necessary multiple point statistics.   

It may be possible to obtain the multiple point statistics by fitting a function based on the 
available exploration data.  However, the non-linearity and the dimensionally of the multiple 
point histogram makes this a difficult task.  Consider that a 16 point statistic with 10 categories, 
results in 1016 bins with each bin unrelated to adjacent bins.  This would be a difficult function to 
fit.  For these reasons, it is common to select a TI that is representative of the reservoir of interest 
to infer the necessary multiple point statistics.  It is also necessary that the TI is exhaustive to 
ensure all statistics, such as the bins of the histogram, can be informed. 

Techniques available for multiple point simulation include: using the single normal equations 
(Guardiano and Srivastava, 1993 and Strebelle, 2002); using simulated annealing with the 
multiple point histogram as the objective function (Deutsch, 1992); updating conditional 
distributions with multiple point statistics (Ortiz and Deutsch, 2003); and, training neural 
networks on training images for multiple point simulation.  Refer to these sources for details on 
multiple point simulation techniques. 

Proposed Methodology 

Fluvial and deepwater TIs (Pyrcz and Deutsch, 2003) will be compared to a data set provided by 
Michael Pyrcz (Chevron) to demonstrate the methodology for selecting TIs.  It is intended that 
this methodology be used after the set of TIs has been narrowed based on the available geological 
knowledge.  Lower order statistics, such as the variogram, should also be used when selecting a 
TI.  This is commonly done and is not considered here, only the multiple point statistics are used 
to demonstrate the proposed methodology. 

The proposed methodology is a comparison of the absolute difference between the runs 
distribution or multiple point histogram of the TIs and the available exploration data.  TIs are then 
ranked based on this difference.  Only one dimensional multiple point statistics will be considered 
because well data contains many samples in the vertical direction.  As a result, any multiple point 
statistic used to compare TIs and exploration data will be better informed in the vertical direction. 

Following the selection of an appropriate TI, the concept of ranking realizations using the 
multiple point histogram or the distribution of runs is explored. 

Using Runs to Select TIs 

Once the cumulative distribution of runs is calculated for the available exploration data it can be 
compared to the distribution of runs for all potential TIs.  This is done by calculating the absolute 
difference between the distributions and summing over all runs lengths, see Figure 7. 

The difference between distributions may be calculated as: 
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Where diff is the difference between the distributions, l is the length of runs, n is the maximum 
length of runs, *

lf  is the cumulative frequency of the well data for a runs length of l and **
lf  is 

the cumulative frequency of the TI for a runs length l.  The smaller the summed difference is, the 
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more alike the two runs distributions are.  This gives a quantitative measure that can be used to 
rank potential TIs. 

There are a number of practical issues with using the runs distribution to select TIs.  First, the 
scale of the features in the TI may be much larger or smaller than the scale of features in the 
available data.  This can be corrected by downscaling the TI or generating new TIs with the 
appropriate dimensions if possible.  The second issue arises from the distribution of runs being 
continuous.  For example, a runs length of 100 would be very similar to a runs length of 99.  If 
the absolute difference between runs lengths were calculated this would artificially inflate the 
difference between the distributions.  This is dealt with by fitting an exponential function to the 
local runs distribution when calculating the difference, smoothing out the effect of similar runs 
lengths.  Moreover, using the cumulative distribution of runs also minimizes this problem as a 
runs length of 100 would contain two 99 runs.  A third practical consideration is the definition of 
the facies in the TI and the exploration data.  In general, using fewer facies will increase the 
number of long runs in the image and reduces the number of shorter runs.  This emphasizes the 
need to have TIs with the identical facies definitions as the well data in order to make a consistent 
comparison of statistics.  A binary net/non-net set of facies is chosen for consistency. 

Using the Multiple Point Histogram to Select TIs 

A similar approach can be taken to compare potential TIs to data based on the multiple point 
histogram.  The methodology is identical to using the runs distribution but the difference is taken 
as the sum of the absolute difference between each multiple point bin. 

When using the multiple point histogram to compare distributions there is no exponential fit used, 
as the multiple point histogram is not continuous and adjacent bins are unrelated.  One 
implementation issue when using the multiple point histogram is dealing with the uninformed 
bins.  Uninformed, or zero bins often pose a problem in multiple point statistics as they can be 
missing, not necessarily zero.  It is often the case that a particular bin is not informed because of 
the sparse exploration data available, as opposed to the particular configuration the zero bin 
corresponds to actually occurring with zero frequency in the reservoir.  Therefore, two cases can 
be considered: i) the naïve difference between the multiple point histogram, and ii) only summing 
the difference between bins when both bins are informed, effectively ignoring the zero bins that 
occur in the well data. 

Case i) naïve difference: 
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Case ii) ignore zero bins: 
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Where diff is the difference between the distributions, i is the bin number, n is the maximum 
number of bins, *

if  is the frequency corresponding to bin i for the wells and **
if  is the frequency 

corresponding to bin i for the TI.  The smaller the summed difference is, the more alike the two 
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multiple point distributions are.  In case ii, the difference at each bin is only summed if *
if  and 

**
if  are informed.  Figure 8 shows two multiple point distributions for a square 4 point template.  

For the remainder of this paper only case i will be considered.  It was found that ignoring the zero 
bins had little effect on the examples presented in this paper. 

For the example shown in Figure 8 the difference between the frequencies for all 16 
configurations would be summed to obtain the difference in the multiple point histogram.  Note 
the four zero bins in the TI, for considering case ii, the difference would be calculated ignoring 
these bins. 

Having identical facies when comparing multiple point statistics is extremely important.  The size 
(number of bins) of the multiple point histogram is dependent on the number of facies present, 
therefore, facies must be consistently defined across all potential TIs and exploration data.   

When using the multiple point histogram to compare well data to a set of potential TIs it is 
important to understand the nature of the 1-D exploration data.  A multiple point configuration, as 
shown in Figure 8, would not be possible because only 1-D data is available in the form of 
exploration wells.  Therefore, a one dimensional multiple point template must be used to compare 
well data to TIs, see Figure 9.  If comparing geostatistical realizations to their parent TI this is not 
an issue because of the 3-D nature of the realizations. 

Case Study: Chevron Well Data Comparison 

Chevron provided a data set consisting of 32 wells from a West African reservoir.  The 
depositional environment of the reservoir is deepwater, which will help to narrow the selection of 
a TI.  TIs from the fluvial/deepwater library (Pyrcz and Deutsch, 2003) will be compared to the 
32 wells using the methodology presented above.  The three TIs Chevron selected as being 
representative of the area will be included in the comparison.  It is important that the facies for all 
TIs and the data are consistent; however, the Chevron data, fluvial/deepwater library and the three 
TIs from Chevron contain different facies definitions.  The TIs and data were converted to net 
and non-net categories for consistency.  For the fluvial TIs in the training image library, the flood 
plain and abandoned channel fill categories were considered to be non net and the remaining 
categories net. 

294 TIs from the fluvial/deepwater TI library (Pyrcz and Deutsch, 2003) and the three TIs from 
Chevron were compared to the Chevron data set.  Each Chevron TI is 78x59x116 and modeled 
after a deepwater setting characterized by channels and lobes, see Figure 10.  The distribution of 
runs for the TIs provided by Chevron are shown in Figure 11.  Each TI in the fluvial/deepwater 
TI library is 256x256x128. 

 
All 297 TIs are ranked according to the differences in the runs distribution and the multiple point 
histogram.  Figure 12 shows the ranking of each TI.  It is known that the 32 wells originated from 
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a deepwater setting, thus, it is expected that the deepwater TIs would be ranked higher.  This is 
the case for ranking with the runs distribution and ranking with the multiple point histogram. 

When the multiple point histogram is used to rank the TIs, ten of the top ten ranked TIs are from 
a deepwater setting, with two being the Chevron TIs.  When the runs distribution is used to rank 
the TIs the top 29 are from a deepwater setting with three being the Chevron TIs.  This is 
promising as the methodology has selected the correct depositional setting.  It is also encouraging 
that the TIs that were selected by Chevron rank highly as these were deemed representative of the 
well data. 

Figure 13 shows that, in general, the ranking statistics agree well with each other.  The high 
correlation, 0.9, seen between the two ranking methods is encouraging and would reinforce the 
selection of a particular TI. 

Comparing multiple point statistics is a useful tool in helping to select TIs but a visual 
comparison of the TIs to the well data would further reinforce the selection of a TI.  It is difficult 
to compare a large model, such as a TI, to well data; therefore, 32 pseudo wells were drilled into 
each TI and are displayed in Figure 14 so that a visual comparison to the 32 wells can be made.  
Shown are the highest and lowest ranked TIs using the ranking methods presented above, as well 
as the three TIs proved by Chevron.   

This visual inspection reveals that the 1st ranked TI based on the runs distribution has a high net 
to gross ratio (NTG).  The NTG for the TIs shown in Figure 14 are given in Table 1.  Both top 
ranked TIs have NTG ratios that are slightly off of the well data.   

Table 1: NTG for select TIs. 

TI NTG 

Chevron Well Data 0.49 
Ranked 1st by runs 0.69 
Ranked 1st by MPS 0.36 
Ranked 297th by both 0.012 
Chevron TI #1 0.48 
Chevron TI #2 0.48 
Chevron TI #3 0.48 

Discussion: Using MPS to select TIs 

Selecting TIs based on a multiple point statistical comparison is meant to narrow the list of 
possible TIs.  It is important to understand the place of the runs distribution and the multiple point 
histogram in selecting TIs.  Based on prior experience it is believed that runs are more stable for 
sparse data while the multiple point histogram does well when there is sufficient data to inform 
the bins.  Each well in the Chevron data contains an average of 118 logs for a total of 3773 data 
points.  This should be a sufficient number of data to generate a multiple point histogram that 
would outperform the runs distribution for TI selection.  If there are too few wells, and an 
informed multiple point histogram is not attainable, runs would likely be more robust.  Both 
statistics should be used to help select TIs.  The final selection should be made on the bases of all 
available information including the NTG ratio, histogram, variogram, geological knowledge and 
experience with similar formations.  It has been common practice to use these sources of 
information to select TIs, however, the methods to compare TIs and exploration data are usually 
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subjective.  We have shown that multiple point statistics can be calculated on exploration data, 
such as the runs distribution and the multiple point histogram and that comparing these statistics 
to the suite of available TIs helps to narrow the choice of TI and provide objective support for TI 
selection. 

Comparing realizations with MPS 

The same methodology that is used to compare exploration data to TIs can be used to compare 
geostatistical realizations to their parent TIs for model validation.  The multiple point statistics 
are compared as per the methodology given above.  This will be demonstrated by comparing 
realizations generated using SNESIM (Strebelle, 2002) to the TI that was used to generate the 
realizations.  For comparison, realizations were also generated using sequential indicator 
simulation (SIS) with the variogram taken after Chevron TI #3.  This TI was selected because it 
was ranked highly by both the multiple point histogram and the runs distribution.   

All realizations generated are 78x59x50 with 75m 75m 6m block sizes respectively, and are 
conditioned to the 32 wells provided by Chevron.  This only covers the lower half of the data set 
(to reduce the time required to generate the realizations).  TI#3 (see Figure 15) will be used for 
both SNESIM and SIS to attempt to reproduce the multiple point features of the TI. 

Generating realizations: SNSIM 

Strebelle’s (2002) SNESIM algorithm for multiple point stimulation will be used to generate 
realizations that attempt to honor the multiple point statistics of the TI shown in Figure 15.  This 
algorithm uses the single normal equations, rather than an iterative approach, to create 
geostatistical realizations.  The reader is referred to Strebelle (2002) for a more detailed 
description of the methodology. 

30 realizations were generated using a 50 point multiple point template.  The template is a three 
dimensional irregular template determined using the methodology presented by Lyster and 
Deutsch (2006).  The parameters used in SNESIM are: maximum of 16 conditioning data; 
minimum of 10 data events; 4 search trees; and a search large enough to find 16 conditioning data 
at all locations.  Figure 16 shows a typical realization. 

Generating Realizations: SIS 

The goal is to use SIS to generate realizations that contain the same features as TI#3.  Therefore 
the variogram calculated from the TI will be used to create 30 SIS realizations.  The variogram: 
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Where ah1 is in the 90˚ direction, ah2 in the 0˚ direction and av is the vertical direction.  One SIS 
realization is shown in Figure 17. 

This was generated by modeling the variogram for Chevron TI #3.  Figure 18 shows that the 
realizations generated using SIS do reproduce the variogram for the TI, with a slightly lower 
correlation in the horizontal directions.  However, it is clear that the structure seen in the TI, 
Figure 15, is missing.  This is most noticeable in the horizontal slices, see Figure 17. 

Comparing geostatistical realizations to TIs 

The 30 realizations generated using SIS and the 30 generated using SNESIM (Strebelle, 2002) 
will be compared to the TI using the distribution of runs and the multiple point histogram.  The 
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same comparison methodology described above will be used to compare the multiple point 
statistics. 

The distribution of runs is considered to be a one dimensional statistic.  Because most of the 
nonlinear features are apparent in the XY plane, see Figure 15, the runs difference was calculated 
for the X and Y directions and averaged to get the difference shown in Figure 19. 

The multiple point histogram was also used to compare realizations.  A 3x3x2 template was used: 
note that this is 2(3x3x2)=262,144 bins and increasing to a 3x3x3 template results in 134,217,728 
bins.  Since there are only 212,268 possible 3x3x2 statistics in the realizations it is unrealistic to 
consider a template greater than 3x3x2. 

The differentiation between the simulation techniques is obvious with the multiple point 
histogram.  SNESIM generates realizations that are more similar to the original TI, in that 
multiple point statistics are honored.  Comparing the ranking of the two measures, Figure 21 
shows that they differ significantly.  The measures are most noticeably different when ranking the 
top ten realizations, arguably the most important realizations.   

Discussion: Using MPS to rank realizations  

The selection of a statistic for ranking is extremely important.  It is apparent that the multiple 
point histogram can better differentiate between the different simulation methods.  The visual 
inspection of the SNESIM realizations indicated they are more similar to the TI, which supports 
the use of the multiple point histogram when ranking realizations.  In this situation the runs 
distribution does not capture the difference between the SNESIM and SIS realizations.  The 
multiple point histogram for a realization is well informed, as there are many repetitions of the 
template, whereas the role of the runs distribution is to be used when there is sparse data and a 
well informed multiple point histogram is not attainable (e.g. statistics calculated from drill 
holes).  Therefore, the multiple point histogram is considered superior when ranking realizations 
relative to an exhaustive training image. 

In this example the ranking measures were used to show that the variogram cannot capture the 
nonlinear features of a TI, as shown by the higher ranking of the SNESIM realizations.  It is 
expected that this would not be the main use for ranking realizations.  In practice it is unrealistic 
that SIS realizations would be created.  It is more likely that 30 SNESIM realizations would be 
created and this ranking technique could be used to select the realizations that most resemble the 
original TI and to check for large differences between the multiple point statistics of TI and 
simulated realizations.  If multiple point simulation is used, it is assumed that the goal is to model 
nonlinear and ordering features that cannot be captured otherwise, therefore this ranking measure 
can be used to determine which realizations have best reproduced these features borrowed from 
of the TI (see Figure 22) 

Figure 22 shows that there is considerable difference between SNESIM realizations.  The top 9 
realizations have a substantially greater similarity to the original TI, see Figure 23.  This could be 
used to determine which realizations will be kept for future analysis. 

This measure should not be used to determine which models represent the p10, p50 or p90 
models, but rather which realizations should be discarded as not capturing the features inherent in 
the TI.  As shown in Figure 23 there is a significant visual difference between the realization 
ranked 30 and the higest ranked realization. 
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Conclusions  

There are a number of practical considerations that must be addressed when using multiple point 
statistics to compare two sets of data, whether for the comparison of exploration data with 
potential TIs or the validation of realizations against a TI.  The first consideration is the scale of 
the features present: if the features are identical, but of a different size, the resulting comparison 
will show that the two sets of data are different.  The second major consideration is which 
multiple point statistic to use.  The multiple point histogram and the distribution of runs have 
been demonstrated, however, there are other multiple point statistics that could be used to 
compare data sets.  The choice of statistic will directly impact which TI is selected or which 
realization is ranked highly; therefore, the statistic should be related to features that will impact 
the transfer function.  A comparison between multiple point statistics is not sufficient evidence to 
select a TI, other sources of information must be used in conjunction with a statistical 
comparison, such as NTG, anisotropy, single point histogram and geological knowledge. 

It has been shown that by using a multiple point statistical comparison, the correct geological 
setting was selected for the well data provided by Chevron.  Moreover, the TIs that were selected 
by Chevron as being representative were also ranked highly by the statistical comparison.  This is 
strong evidence that there is important information gained by performing a simple calculation of 
the difference between two different sets of data. 

Ranking realizations is also a useful tool for determining which realizations contain the desired 
features present in the TI.  In this context, it is recommended that the multiple point histogram be 
used as the ranking measure, since exhaustive TIs and realizations provide sufficient datasets for 
reliable calculation of the multiple point histogram.   

Future work 

With the software developed for this paper it is possible to compare the distribution of runs or the 
multiple point histogram.  No other flexibility was added.  It would be useful to have a program 
that can compare the single point histogram, variogram, NTG, transition probabilities, runs 
distribution, and the multiple point histogram.  Extending on this further, it would be possible to 
combine these multiple ranking methods by weighing each difference: 

Difference score = 0.2(variogram) + 0.2(histogram) + 0.3(runs) + 0.3(multiple point histogram) 

This would generate a difference score that would incorporate multiple sources of information.  
Weighing could be assigned based on importance.  For example, if the features are linear less 
weigh would be placed on the multiple point statistics, if there is sparse data and the multiple 
point histogram is not well informed its weighting would be reduced.  In this way all available 
objective knowledge of the exploration data can be combined into one ranking measure. 

Another area of work that was not explored was developing new/different multiple point statistics 
that could be used for comparison.  The connectivity function has been mentioned, but new 
measures could be developed specifically for comparing petrophysical data. 
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Figure 1: Example of calculating the distribution of runs for a well. 

 

   
Figure 2: Left - cumulative distribution of runs. Right - distribution of runs. 

 

 
Figure 3:  All possible arrangements of a 4 point configuration with two categories. 
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Figure 4: Example image to calculate the multiple point histogram.  Figure scale: unit length, 10 
by 10 blocks. 

 

 
Figure 5: Multiple point histogram of the example image. 

 

 
Figure 6: Three possible multiple point templates.  Not all possible configurations of the 
categories are shown for each template.  Above – a nine point square template.  Middle – a six 
point rectangular template.  Below – a five point irregular template. 
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Figure 7: The difference between two distribution of runs.  The red could be the distribution 
from exploration wells being compared to the green distribution from a TI. 
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Figure 8: Comparing two multiple point histograms.  Two distributions are shown for 
comparison. 
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Figure 9: Possible one dimensional multiple point templates.  Above – a continuous three point 
vertical template.  Middle – a continuous four point vertical template. Below – an irregular three 
point vertical template.  

 

  
Figure 10: Three TIs received from Chevron, hereafter referred to as TI1 (top left), TI2 (top 
right), and TI3 (bottom).  The facies are reduced to net/non-net categories for comparison.  The 
red facies is considered non-net while the other facies are combined to form the net category.  
NTS. 

 

 
Figure 11: Runs distribution for the Chevron TIs. 
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Figure 12: Comparing the TIs to the Chevron well data.  Both the multiple point histogram and 
the distribution of runs is used to rank the 297 TIs.  Only the 100 highest ranked TIs are shown. 

 

 
Figure 13: Cross plot of the rank received by each TI.  Correlation = 0.90. 
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Figure 14: 32 wells from the highest and lowest ranked TIs, taken as columns of the TI, and the 
32 wells from the data set.  Both runs and MPS ranked the same TI 297th.  The three Chevron TIs 
are also included. 

 

 

 
Figure 15: Cross sections of Chevron TI#3.  The vertical is exaggerated.  Black is net. 
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Figure 16: Typical SNESIM (Strebelle, 2002) realization.  The vertical is exaggerated.  Black is 
net. 

 

 

 
Figure 17:  Typical SIS realization.  The vertical is exaggerated.  Black is net. 
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Figure 18:  Comparing the variogram from the TI and the SIS realizations.  Red represents the 
major direction of continuity (90˚) black is the minor direction and gray is the vertical direction.  
Lines represent the variogram for the TI and the points are the variogram of one SIS realization. 

 
Figure 19: Ranking realizations based on the runs distribution. 

 

 
Figure 20: Ranking realizations based on the multiple point histogram. 
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Figure 21: Comparing the two ranking measures.  Correlation = 0.43. 

 

 
Figure 22:  Ranking the 30 SNESIM realizations using the multiple point histogram. 
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Figure 23:  Cross sections of ranked SNESIM realizations. 


